Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The cellular RNA helicase DDX1 interacts with coronavirus nonstructural protein 14 and enhances viral replication.

Identifieur interne : 002424 ( Main/Exploration ); précédent : 002423; suivant : 002425

The cellular RNA helicase DDX1 interacts with coronavirus nonstructural protein 14 and enhances viral replication.

Auteurs : Linghui Xu [Singapour] ; Siti Khadijah ; Shouguo Fang ; Li Wang ; Felicia P L. Tay ; Ding Xiang Liu

Source :

RBID : pubmed:20573827

Descripteurs français

English descriptors

Abstract

The involvement of host proteins in the replication and transcription of viral RNA is a poorly understood area for many RNA viruses. For coronaviruses, it was long speculated that replication of the giant RNA genome and transcription of multiple subgenomic mRNA species by a unique discontinuous transcription mechanism may require host cofactors. To search for such cellular proteins, yeast two-hybrid screening was carried out by using the nonstructural protein 14 (nsp14) from the coronavirus infectious bronchitis virus (IBV) as a bait protein, leading to the identification of DDX1, a cellular RNA helicase in the DExD/H helicase family, as a potential interacting partner. This interaction was subsequently confirmed by coimmunoprecipitation assays with cells coexpressing the two proteins and with IBV-infected cells. Furthermore, the endogenous DDX1 protein was found to be relocated from the nucleus to the cytoplasm in IBV-infected cells. In addition to its interaction with IBV nsp14, DDX1 could also interact with the nsp14 protein from severe acute respiratory syndrome coronavirus (SARS-CoV), suggesting that interaction with DDX1 may be a general feature of coronavirus nsp14. The interacting domains were mapped to the C-terminal region of DDX1 containing motifs V and VI and to the N-terminal portion of nsp14. Manipulation of DDX1 expression, either by small interfering RNA-induced knockdown or by overexpression of a mutant DDX1 protein, confirmed that this interaction may enhance IBV replication. This study reveals that DDX1 contributes to efficient coronavirus replication in cell culture.

DOI: 10.1128/JVI.00392-10
PubMed: 20573827


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The cellular RNA helicase DDX1 interacts with coronavirus nonstructural protein 14 and enhances viral replication.</title>
<author>
<name sortKey="Xu, Linghui" sort="Xu, Linghui" uniqKey="Xu L" first="Linghui" last="Xu">Linghui Xu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos</wicri:regionArea>
<wicri:noRegion>Proteos</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Khadijah, Siti" sort="Khadijah, Siti" uniqKey="Khadijah S" first="Siti" last="Khadijah">Siti Khadijah</name>
</author>
<author>
<name sortKey="Fang, Shouguo" sort="Fang, Shouguo" uniqKey="Fang S" first="Shouguo" last="Fang">Shouguo Fang</name>
</author>
<author>
<name sortKey="Wang, Li" sort="Wang, Li" uniqKey="Wang L" first="Li" last="Wang">Li Wang</name>
</author>
<author>
<name sortKey="Tay, Felicia P L" sort="Tay, Felicia P L" uniqKey="Tay F" first="Felicia P L" last="Tay">Felicia P L. Tay</name>
</author>
<author>
<name sortKey="Liu, Ding Xiang" sort="Liu, Ding Xiang" uniqKey="Liu D" first="Ding Xiang" last="Liu">Ding Xiang Liu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20573827</idno>
<idno type="pmid">20573827</idno>
<idno type="doi">10.1128/JVI.00392-10</idno>
<idno type="wicri:Area/PubMed/Corpus">001681</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001681</idno>
<idno type="wicri:Area/PubMed/Curation">001681</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001681</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001571</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001571</idno>
<idno type="wicri:Area/Ncbi/Merge">002157</idno>
<idno type="wicri:Area/Ncbi/Curation">002157</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">002157</idno>
<idno type="wicri:Area/Main/Merge">002457</idno>
<idno type="wicri:Area/Main/Curation">002424</idno>
<idno type="wicri:Area/Main/Exploration">002424</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The cellular RNA helicase DDX1 interacts with coronavirus nonstructural protein 14 and enhances viral replication.</title>
<author>
<name sortKey="Xu, Linghui" sort="Xu, Linghui" uniqKey="Xu L" first="Linghui" last="Xu">Linghui Xu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos</wicri:regionArea>
<wicri:noRegion>Proteos</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Khadijah, Siti" sort="Khadijah, Siti" uniqKey="Khadijah S" first="Siti" last="Khadijah">Siti Khadijah</name>
</author>
<author>
<name sortKey="Fang, Shouguo" sort="Fang, Shouguo" uniqKey="Fang S" first="Shouguo" last="Fang">Shouguo Fang</name>
</author>
<author>
<name sortKey="Wang, Li" sort="Wang, Li" uniqKey="Wang L" first="Li" last="Wang">Li Wang</name>
</author>
<author>
<name sortKey="Tay, Felicia P L" sort="Tay, Felicia P L" uniqKey="Tay F" first="Felicia P L" last="Tay">Felicia P L. Tay</name>
</author>
<author>
<name sortKey="Liu, Ding Xiang" sort="Liu, Ding Xiang" uniqKey="Liu D" first="Ding Xiang" last="Liu">Ding Xiang Liu</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cell Nucleus (metabolism)</term>
<term>Chlorocebus aethiops</term>
<term>Coronavirus Infections (genetics)</term>
<term>Coronavirus Infections (metabolism)</term>
<term>Coronavirus Infections (virology)</term>
<term>Cytoplasm (metabolism)</term>
<term>DEAD-box RNA Helicases (genetics)</term>
<term>DEAD-box RNA Helicases (metabolism)</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Infectious bronchitis virus (genetics)</term>
<term>Infectious bronchitis virus (physiology)</term>
<term>Protein Binding</term>
<term>Protein Transport</term>
<term>Two-Hybrid System Techniques</term>
<term>Vero Cells</term>
<term>Viral Nonstructural Proteins (genetics)</term>
<term>Viral Nonstructural Proteins (metabolism)</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Cellules HeLa</term>
<term>Cellules Vero</term>
<term>Cytoplasme (métabolisme)</term>
<term>DEAD-box RNA helicases (génétique)</term>
<term>DEAD-box RNA helicases (métabolisme)</term>
<term>Humains</term>
<term>Infections à coronavirus (génétique)</term>
<term>Infections à coronavirus (métabolisme)</term>
<term>Infections à coronavirus (virologie)</term>
<term>Liaison aux protéines</term>
<term>Noyau de la cellule (métabolisme)</term>
<term>Protéines virales non structurales (génétique)</term>
<term>Protéines virales non structurales (métabolisme)</term>
<term>Réplication virale</term>
<term>Techniques de double hybride</term>
<term>Transport de protéines</term>
<term>Virus de la bronchite infectieuse (génétique)</term>
<term>Virus de la bronchite infectieuse (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DEAD-box RNA Helicases</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Infectious bronchitis virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>DEAD-box RNA helicases</term>
<term>Infections à coronavirus</term>
<term>Protéines virales non structurales</term>
<term>Virus de la bronchite infectieuse</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Nucleus</term>
<term>Coronavirus Infections</term>
<term>Cytoplasm</term>
<term>DEAD-box RNA Helicases</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cytoplasme</term>
<term>DEAD-box RNA helicases</term>
<term>Infections à coronavirus</term>
<term>Noyau de la cellule</term>
<term>Protéines virales non structurales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Virus de la bronchite infectieuse</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Infectious bronchitis virus</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Infections à coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Chlorocebus aethiops</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Protein Binding</term>
<term>Protein Transport</term>
<term>Two-Hybrid System Techniques</term>
<term>Vero Cells</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules HeLa</term>
<term>Cellules Vero</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Réplication virale</term>
<term>Techniques de double hybride</term>
<term>Transport de protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The involvement of host proteins in the replication and transcription of viral RNA is a poorly understood area for many RNA viruses. For coronaviruses, it was long speculated that replication of the giant RNA genome and transcription of multiple subgenomic mRNA species by a unique discontinuous transcription mechanism may require host cofactors. To search for such cellular proteins, yeast two-hybrid screening was carried out by using the nonstructural protein 14 (nsp14) from the coronavirus infectious bronchitis virus (IBV) as a bait protein, leading to the identification of DDX1, a cellular RNA helicase in the DExD/H helicase family, as a potential interacting partner. This interaction was subsequently confirmed by coimmunoprecipitation assays with cells coexpressing the two proteins and with IBV-infected cells. Furthermore, the endogenous DDX1 protein was found to be relocated from the nucleus to the cytoplasm in IBV-infected cells. In addition to its interaction with IBV nsp14, DDX1 could also interact with the nsp14 protein from severe acute respiratory syndrome coronavirus (SARS-CoV), suggesting that interaction with DDX1 may be a general feature of coronavirus nsp14. The interacting domains were mapped to the C-terminal region of DDX1 containing motifs V and VI and to the N-terminal portion of nsp14. Manipulation of DDX1 expression, either by small interfering RNA-induced knockdown or by overexpression of a mutant DDX1 protein, confirmed that this interaction may enhance IBV replication. This study reveals that DDX1 contributes to efficient coronavirus replication in cell culture.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Singapour</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Fang, Shouguo" sort="Fang, Shouguo" uniqKey="Fang S" first="Shouguo" last="Fang">Shouguo Fang</name>
<name sortKey="Khadijah, Siti" sort="Khadijah, Siti" uniqKey="Khadijah S" first="Siti" last="Khadijah">Siti Khadijah</name>
<name sortKey="Liu, Ding Xiang" sort="Liu, Ding Xiang" uniqKey="Liu D" first="Ding Xiang" last="Liu">Ding Xiang Liu</name>
<name sortKey="Tay, Felicia P L" sort="Tay, Felicia P L" uniqKey="Tay F" first="Felicia P L" last="Tay">Felicia P L. Tay</name>
<name sortKey="Wang, Li" sort="Wang, Li" uniqKey="Wang L" first="Li" last="Wang">Li Wang</name>
</noCountry>
<country name="Singapour">
<noRegion>
<name sortKey="Xu, Linghui" sort="Xu, Linghui" uniqKey="Xu L" first="Linghui" last="Xu">Linghui Xu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002424 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002424 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20573827
   |texte=   The cellular RNA helicase DDX1 interacts with coronavirus nonstructural protein 14 and enhances viral replication.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20573827" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021